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> Given data snapshots  from  to  

> Predict temporal snapshots  
>  in the order of 10.000  

> Assumption:
>  is produced by quasi-periodic system

xt t = 1 t = T

xT+h
h

xt

Objective



Spatio-Temporal Systems



> Fourier Forecast
> Similar to Fourier Transform
> No implicit periodicity assumption  

> Koopman Forecast
> Based on Koopman theory
> Fourier Transform in non-linear basis

Outline



> Fourier Forecast
> Non-convex objective  

> Koopman Forecast
> Non-linear and non-convex objective

> FFT allows for obtaining global optima

Outline



> Both learning objectives contain easy and hard to 
optimize parameters

> For both algorithms, the strategy for obtaining the 
global optimum of a single value of the hard to 
optimize parameters is introduced
> Apply coordinate descent
> Alternately optimize hard and easy quantities

Solution strategy



Fourier Forecast



> Goal: Fit linear dynamical  system to data yt xt

Objective

E(A, B) =
T

∑
t=1

(xt − Ayt)
2

yt = Byt−1

minimize

subject to

Re[eig(B)] = 0



> Goal: Fit linear dynamical  system to data yt xt

Objective

E(A, ω) =
T

∑
t=1

xt − A

sin(ω1t)
⋮

sin(ωNt)
cos(ω1t)

⋮
cos(ωNt)

2



> Goal: Fit linear dynamical  system to data yt xt

Objective

E(A, ω) =
T

∑
t=1

(xt − AΩ(ωt))2



> Goal: Fit linear dynamical  system to data 
> Because of linearity of  and 

> Analytic solution for 
> Symmetry relationship to Fourier Transform

yt xt
A Ω

ωi

Objective

E(A, ω) =
T

∑
t=1

(xt − AΩ(ωt))2



Symmetry

E(A, ω) =
T

∑
t=1

(xt − AΩ(ωt))2

Jaynes, E. T. "Bayesian spectrum and chirp analysis." Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems. 
Springer, Dordrecht, 1987. 1-37.



> For quasi-periodic systems, FT/error surface is 
superposition of sinc-functions

Spectral leakage



> Fast Fourier Transform
> evaluates the Fourier Transform at 

frequencies with period 
> harmful for forecasting

> Gradient Descent
> because of non-convexity, will get stuck in 

bad local minimum

T

Combining FFT and GD



> Use Fast Fourier Transform 
> to locate global valley of error surface

> Use Gradient Descent
> to improve initial guess of FFT to break 

implicit periodicity assumptions

Combining FFT and GD



Combining FFT and GD



Koopman Forecast



Spatio-Temporal Systems



> Koopman showed in 1931:
> any non-linear dynamical system can be 

lifted by non-linear but time-invariant function 
into space where time evolution is linear

> Analogous to Cover’s theorem (1965)
> Theoretical underpinning of Kernel methods 

and Deep Learning

Koopman Theory

Cover, T.M. (1965). "Geometrical and Statistical properties of systems of linear inequalities with applications in pattern recognition" (PDF). IEEE 
Transactions on Electronic Computers. EC-14 (3): 326–334

Koopman, Bernard O. "Hamiltonian systems and transformation in Hilbert space." Proceedings of the National Academy of Sciences of the United States of 
America 17.5 (1931): 315



Koopman Theory

Koopman: 

Cover: 

f



Objective: Koopman

Ω(ωt) =

sin(ω1t)
⋮

sin(ωNt)
cos(ω1t)

⋮
cos(ωNt)

> Recap: Stable Linear Dynamical System 



Objectives

E(Θ, ω) =
T

∑
t=1

(xt − fΘ(Ω(ωt)))2

E(A, ω) =
T

∑
t=1

(xt − AΩ(ωt))2

Koopman:

Fourier:



Objectives

E(Θ, ω) =
T

∑
t=1

(xt − fΘ(Ω(ωt)))2
Koopman:



Objective: Koopman

E(Θ, ω) =
T

∑
t=1

(xt − fΘ(Ω(ωt)))2
Koopman:

Neural Network parameterized by Θ



Objective: Koopman

E(Θ, ω) =
T

∑
t=1

(xt − fΘ(Ω(ωt)))2
Koopman:

Because of non-linearity, no analytical solution for  ωi



Objective: Koopman

E(Θ, ω) =
T

∑
t=1

(xt − fΘ(Ω(ωt)))2
Koopman:

However, in spite of non-linearity and 
non-convexity, computing global optima 
in direction of  possible!ωi



Objective: Koopman

E(Θ, ω) =
T

∑
t=1

(xt − fΘ(Ω(ωt)))2
Koopman:

=
T

∑
t=1

L(Θ, ω, t)

L(Θ, ω, t) = (xt − fΘ(Ω(ωt)))2



Periodicity in loss

L(Θ, ω +
2π
t

, t) = (xt − fΘ(Ω((ω +
2π
t

)t)))
2

= (xt − fΘ(Ω(ωt)))2

= L(Θ, ω, t)



Periodicity in loss

L(Θ, ω, t) = L(Θ, ω +
2π
t

, t)

sin((ω +
2π
t

)t) = sin(ωt + 2π) = sin(ωt)



Periodicity in loss

L(Θ, ω, t) = L(Θ, ω +
2π
t

, t)



Computing the loss

For all , compute loss within t
2π
t



Computing the loss
For all , repeat computed loss  timest t



Computing the loss
For all , resample losst



Computing the loss

+
+

Sum all ‘temporally local’ losses



Computing the loss

+
+

=



Easy and efficient to implement in freq. 
domain!

Computing the loss

for t in range(T): 
E_ft[range(K)*t] += fft(L[t]) 

E = ifft(E_ft)



Results



> Fourier algorithm has universal approximation 
properties on finite datasets

> Sines and cosine form an orthogonal basis
> which is periodic in 

> Analogous to Cover’s theorem, requires  
dimensional space

T

N

Results: Theoretical



> For infinite data, Koopman algorithm is more 
expressive than Fourier counterpart

Results: Theoretical



> Close relationship to Bayesian Spectral analysis
> Error grows linear in time and with noise 

variance
> But shrinks superlinearly with amount of data

Results: Theoretical

Jaynes, E. T. "Bayesian spectrum and chirp analysis." Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems. 
Springer, Dordrecht, 1987. 1-37.

Bretthorst, G. Larry. Bayesian spectrum analysis and parameter estimation. Vol. 48. Springer Science & Business Media, 2013.

| ̂xt(ω) − ̂xt(ω*) | ∈ 𝒪 ( t

T3 ∑
i

σ2

Ai )



Results: Practical

xt = sin ( 2π
24

t)
17

+ ϵt



Results: Practical



Results: Practical



Results: Practical



Results: Practical



Spatio-Temporal Systems



> Fit linear and non-linear oscillators to data
> non-convex and non-linear objective

> Many real world phenomena are quasi-periodic
> gait, (space) weather, fluid flows, 

epidemiological data, power systems, sales, 
room occupancy, … 

> Code is available:
> https://github.com/helange23/from_fourier_to_koopman

Summary


